【作輔助圖】
1. 以\(\overline { BC } \)為邊長向內作正方形\(CBDE\).
2. \(\overline { AB } \)上取一點\(P\)使得\(\overline { AP }=\overline { AC } \),作正方形\(APFG\).
3. \(\overline { AB} \)上取一點\(M\)使得\(\overline { MB }=\overline { AC } \),作正方形\(BMNO\),連\(\overline { MF } \).
4. \(\overline { AC } \)上取一點\(L\)使得\(\overline { EL }=\overline { AB } \),作正方形\(ELHK\).
5. 過\(C\)點作垂直\(\overline { AB } \)的直線,與直線\(HK\)交於\(W\)點,連\(\overline { WK } \).
6. \(\overline { HK } \)上取一點\(U\)使得\(\overline { UW }=\overline { AB } \).
7. 過\(U\)點作垂直\(\overline { AC } \)的直線,交\(\overline { AC } \)\(R\)點。
8. 過\(W\)點作垂直直線\(RE\)的直線,交直線\(RE\)\(S\)點,連\(\overline { WS } \),\(\overline { SE } \).
9. 過\(S\)點作垂直\(\overline { WC } \)的直線,交\(\overline { WC } \)\(T\)點。
10. 過\(U\)點作垂直\(\overline { WC } \)的直線,交\(\overline { WC } \)\(V\)點。
11. \(\overline { WC } \)上取一點\(X\)使得\(\overline { TX }=\overline { BC } \).
12. 過\(X\)點作垂直\(\overline { WC } \)的直線,交\(\overline { WS } \)\(Y\)點。
13. 直線\(BO\)\(\overline { CE } \)交於\(Q\)點,連\(\overline { BQ } \).
14. 過\(R\)點作垂直直線\(WC\)的直線,交直線\(WC\)\(Z\)點,連\(\overline { RZ } \),\(\overline { ZC } \).
【求證過程】
證明四邊形\(UWSR\)為面積為\({ c }^{ 2 }\)的正方形,再證明正方形\(UWSR\)所切割出的所有區塊面積總和等於正方形\(CBDE\) 的面積加上正方形\(BMNO\)的面積,最後推出勾股定理的關係式。
閱讀全文:勾股定理證明-G193
【作輔助圖】
1. 以\(\overline { AB } \)為邊長向外作正方形\(ABKH\).
2. 延長\(\overline { CA } \)\(G\)點使得\(\overline { AG }=\overline { BC } \),連\(\overline { GH } \).
3. 過\(C\)點作垂直\(\overline { AB } \)的直線,交\(\overline { AB } \)\(Y\)點,交\(\overline { HK } \)\(Q\)點。
4. 延長\(\overline { CB } \)\(D\)點使得\(\overline { BD }=\overline { AC } \),連\(\overline { DK } \).
5. \(\overline { CA } \)上取一點\(F\)使得\(\overline { CF }=\overline { CB } \).
6. 過\(F\)點作垂直\(\overline { AC } \)的直線,交\(\overline { AB } \)\(W\)點,交\(\overline { CQ } \)\(P\)點,連\(\overline { PH } \).
7. 過\(P\)點作垂直\(\overline { BD } \)的直線,交\(\overline { BD } \)\(E\)點,交\(\overline { BK } \)\(X\)點,連\(\overline { PK } \).
8. 在\(\overline { GH } \)上取一點\(L\)使得\(\overline { HL }=\overline { WP } \),過\(L\)點作垂直\(\overline { AH } \)的直線,交\(\overline { AH } \)\(M\)點。
9. 在\(\overline { DE } \)上取一點\(U\)使得\(\overline { DU }=\overline { EB } \),過\(U\)點作垂直\(\overline { BK } \)的直線,交\(\overline { BK } \)\(T\)點。
10. 過\(U\)點作平行\(\overline { BK } \)的直線,交\(\overline { DK } \)\(V\)點。
11. \(\overline { HK } \)上取一點\(O\)使得\(\overline { HO }=\overline { AW } \).
12. \(\overline { PQ } \)上取一點\(R\)使得\(\overline { PR }=\overline { UV } \).
13. 過\(O\)點作垂直\(\overline { PH } \)的直線,交\(\overline { PH } \)\(N\)點。
14. 過\(R\)點作垂直\(\overline { PK } \)的直線,交\(\overline { PK } \)\(S\)點。
15. 以\(\overline { AC } \)為邊長向外作正方形\(ACF'G'\).
16. 以\(\overline { CB } \)為邊長向外作正方形\(CBD'E'\).
【求證過程】
分別以直角三角形\(ABC\)的三邊向外作正方形\(CBD'E'\)、正方形\(ACF'G'\)與正方形\(ABKH\),正方形\(ABKH\)面積等於長方形\(AYQH\)的面積加上長方形\(PKQY\)的面積,證明長方形\(AYQH\)的面積等於正方形\(ACF'G'\)的面積,同時長方形\(PKQY\)的面積也與正方形\(CBD'E'\)的面積相等,最後推出勾股定理的關係式。
閱讀全文:勾股定理證明-G194
【作輔助圖】
1. 以\(\overline { CB } \)為邊長向內作正方形\(CBDE\),\(\overline { DE } \)\(\overline { AB } \)\(S\)點。
2. 直線\(BC\)上取一點\(M\)使得\(\overline { BM }=\overline { BA }=c \),以\(\overline { BM } \)為邊長向內作正方形\(BMKH\).
3. \(\overline { BH } \)上取一點\(R\)使得\(\overline { DR }=\overline { AC }=b \),以\(\overline { DR } \)為邊長向內作正方形\(DRFG\).
4. 作直線\(GB\),交\(\overline { MK } \)\(L\)點。
5. 過\(M\)點作垂直\(\overline { BL } \)的直線,交\(\overline { BL } \)\(N\)點。
6. 過\(H\)點作垂直\(\overline { BL } \)的直線,交\(\overline { BL } \)\(O\)點。
7. \(\overline { BL } \)上取一點\(Q\)使得\(\overline { BQ }=\overline { AE } \),過\(Q\)點作垂直\(\overline { BL } \)的直線,交\(\overline { BC } \)\(P\)點。
8. 過\(K\)點作垂直直線\(BL\)的直線,交直線\(BL\)\(T\)點,連\(\overline { KT } \),\(\overline { TL } \).
【求證過程】
以直角三角形\(ABC\)\(\overline { CB } \)為邊長向內作正方形\(CBDE\),以\(\overline { MB } \)為邊長向外作正方形\(BMKH\),再以\(\overline { DR } \)為邊長向外作正方形\(DRFG\),證明正方形\(BMKH\)所切割出的所有區塊面積總和等於正方形\(CBDE\)的面積加上正方形\(DRFG\)的面積,最後推出勾股定理的關係式。
閱讀全文:勾股定理證明-G195
【作輔助圖】
1. 以\(\overline { AB } \)為邊長向外作正方形\(ABKH\).
2. 延長\(\overline { CA } \)\(L\)點,使得\(\overline { AL }=\overline { CB }=a \),以\(\overline { AL } \)為邊長向內作正方形\(ALED\).
3. 連\(\overline { BD } \) .
4. 延長\(\overline { CB } \)\(F\)點,使得\(\overline { BF }=\overline { CA }=b \).
5. \(\overleftrightarrow { FK }\),\(\overleftrightarrow { EH }\)相交於\(M\) 點,連\(\overline { DM } \) .
6. 過\(D\)作垂直\(\overleftrightarrow { FK }\)的直線,交\(\overleftrightarrow { FK }\)\(G\)點。
【求證過程】
\(\overline { AB } \)為邊長向外作正方形\(ABKH\),證明正方形\(ABKH\)面積等於正方形\(ALED\)的面積加上正方形\(BFGD\)的面積,最後推出勾股定理的關係式。
閱讀全文:勾股定理證明-G196
【作輔助圖】
1. 以\(\overline { AB } \)為邊長向外作正方形\(ABKH\).
2. 延長\(\overline { CA } \)\(E\)點,使得\(\overline { AE }=\overline { CB }=a \),以\(\overline { AE } \) 為邊長向內作正方形\(AEDL\).
3. 連\(\overline { BL } \).
4. 延長\(\overline { CB } \)\(F\)點,使得\(\overline { BF }=\overline { CA }=b \).
5. \(\overleftrightarrow { FK }\),\(\overleftrightarrow { DH }\)相交於\(M\)點。
6. 過\(L\)點作垂直\(\overleftrightarrow { FK }\)的直線,交\(\overleftrightarrow { FK }\)\(G\)點。
【求證過程】
\(\overline { AB } \)為邊長向外作正方形\(ABKH\),證明正方形\(ABKH\)面積等於正方形\(AEDL\)的面積加上正方形\(BLGF\)的面積,最後推出勾股定理的關係式。
閱讀全文:勾股定理證明-G197