勾股定理證明-Q003
- 詳細內容
-
分類:魯米斯勾股證明(向量篇)
-
發佈於:19 十月 2016
-
點擊數:631
【作輔助圖】
1. 將直角三角形\(ABC\)視為長方形\(ADBC\)的一半,而\(D\)點是長方形\(ADBC\)的其中一個頂點。
2. 連接\(\overline { AD } \)、\(\overline { BD } \)、\(\overline { CD } \)。
【求證過程】
根據方向向量的合成關係,以及在向量的內積與長度間作轉換,並由長方形兩條對角線等長之性質,整理式子推出勾股定理的關係式。
(閱讀全文,請下載附加檔案)