勾股定理證明-G003
- 詳細內容
-
分類:魯米斯勾股證明(幾何篇)
-
發佈於:08 一月 2017
-
點擊數:969
【作輔助圖】
1. 任意作一正方形\(WXYZ\),並作一直角三角形\(ABC\),使\(\overline { BC }=\overline { WX } \),\(\overline { AC }=2\overline { BC } \)。
2. 在正方形\(WXYZ\)中,作\(\overline { TU } \)垂直平分\(\overline { WZ } \),\(\overline { XY } \),並連接\(\overline { XT } \)。
3. 以\(\overline { AC } \)為邊長作一正方形\(CKHN\)。
4. 在正方形\(CKHN\)中,在四邊上向內作與\(\triangle XTU \)全等的\(\triangle CDE \),\(\triangle KFG \),\(\triangle HIJ \),\(\triangle NPQ \)。
5. 延長\(\overline { DE } \),\(\overline { FG } \),\(\overline { IJ } \),\(\overline { PQ } \),分別與正方形\(CKHN\)四邊相交於\(R,S,O,M\)。
【求證過程】
先設法證明\(\overrightarrow { KG }\)通過點\(P\),且與\(\overline { DR } \)平行,再證明\(\overrightarrow { DR }\),\(\overrightarrow { MP }\),\(\overline { CP } \),所建構的\(\triangle PR{ L }_{ 1 }\)與\(\triangle CRE \)全等。再說明\(\triangle CRE \),\(\triangle KSG \),\(\triangle HOJ \),\(\triangle NMQ \)與八邊形\(PRDSFOIM\)恰可拼合出以\(\overline { AC } \)為邊長的正方形,且\(\triangle CDE \),\(\triangle KFG \),\(\triangle HIJ \),\(\triangle NPQ \)恰可拼合出以\(\overline { BC } \)為邊長的正方形,藉由正方形\(CNHK\)的分割,及面積和相等的關係,可推出勾股定理的關係式。
(閱讀全文,請下載附加檔案)