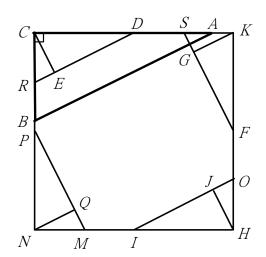
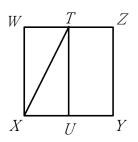
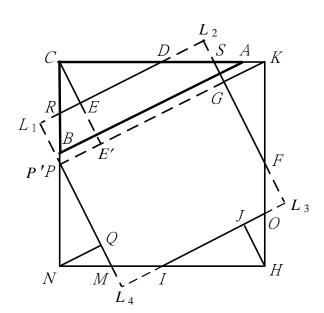
勾股定理證明-G003

【作輔助圖】

- 1. 任意作一正方形 WXYZ,並作一直角三角形 ABC,使 $\overline{BC} = \overline{WX}, \overline{AC} = 2\overline{BC}$ 。
- 2. 在正方形WXYZ中,作 \overline{TU} 垂直平分 \overline{WZ} , \overline{XY} ,並連接 \overline{XT} 。
- 3. 以 \overline{AC} 為邊長作一正方形 CKHN。
- 4. 在正方形 CKHN 中,在四邊上向內作與 ΔXTU 全等的 ΔCDE , ΔKFG , ΔHIJ , ΔNPQ 。
- 5. 延長 \overline{DE} , \overline{FG} , \overline{IJ} , \overline{PQ} ,分別與正方形CKHN四邊相交於R,S,O,M。







【求證過程】

先設法證明 \overline{KG} 通過點P,且與 \overline{DR} 平行,再證明 \overline{DR} , \overline{MP} , \overline{CP} 所建構的 ΔPRL ,與 ΔCRE 全等。再說明 ΔCRE , ΔKSG , ΔHOJ , ΔNMQ 與八邊形 PRDSFOIM 恰可拼合出以 \overline{AC} 為邊長的正方形,且 ΔCDE , ΔKFG , ΔHIJ , ΔNPQ 恰可拼合出以 \overline{BC} 為邊長的正方形,藉由正方形 CNHK 的分割,及面積和相等的關係,可推出勾股定理的關係式。

1. 先證明 $\triangle CDR$, $\triangle KFS$, $\triangle HIO$, $\triangle NPM$ 為全等三角形,而得到 $\triangle CRE \cong \triangle KSG \cong \triangle HOJ \cong \triangle NMQ$.

因為
$$\Delta CDE \cong \Delta KFG$$
,可知 $\overline{CD} = \overline{KF}$, $\angle CDR = \angle KFG$,又 $\angle C = \angle K = 90^{\circ}$,所以,
$$\Delta CDR \cong \Delta KFS \text{ (ASA } 全等)$$

同理可推得

 $\triangle CDR \cong \triangle KFS \cong \triangle HIO \cong \triangle NPM \quad \underline{\exists} \ \triangle CRE \cong \triangle KSG \cong \triangle HOJ \cong \triangle NMQ$.

2. 證明 DR / /KG

因為
$$\angle KGF = 90^{\circ} = \angle SKF$$
,且 $\Delta CDE \cong \Delta KFG$,可推得 $\angle SKG + \angle FKG = 90^{\circ} = \angle FKG + \angle KFG$,且 $\angle CDE = \angle KFG$,所以
 $\angle SKG = \angle KFG = \angle CDE$ (同位角)

故

 $\overrightarrow{DR}//\overrightarrow{KG}$.

3. 證明 \overrightarrow{KG} 通過P點。

延長 \overrightarrow{KG} ,且與 \overrightarrow{CN} 交於P',再延長 \overrightarrow{CE} ,且與 \overrightarrow{KG} 交於E'。

根據 G002,證明步驟 5. 可知 $\overline{CD} = \overline{XT} = \frac{1}{2}\overline{AB} = \frac{1}{2}\overline{CK}$,即 D 為 \overline{CK} 的中點,同理可證得 F,I,B 亦為正方形 CKHN 邊上的中點。

因為 $\overline{DR}//\overline{KG}$,且 $\angle CED = 90^{\circ}$ 及D為 \overline{CK} 的中點,可得 $\angle CE'P' = 90^{\circ}$,且 $\overline{CE'} = 2\overline{CE}$ $= 2\overline{XU} = \overline{TU} = \overline{DE}$,又 $\angle E'CP' = \angle CDE$,所以

$$\Delta CP'E' \cong \Delta DCE$$
(ASA 全等),得到 $\overline{CP'} = \overline{CD}$

因為D,F,I,B為正方形CKHN 邊上的中點,且 $\Delta CDR \cong \Delta NPM$,所以

$$\overline{CP'} = \overline{CD} = \overline{PN} = \frac{1}{2}\overline{CN}$$

故

P'=P,即 \overline{KG} 通過P點。

4. 討論八邊形 PRDSFOIM 的面積與 $\Delta CRE, \Delta KSG, \Delta HOJ, \Delta NMQ$ 面積的關係。

(1)

延長 \overrightarrow{DR} , \overrightarrow{SF} , \overrightarrow{IJ} , \overrightarrow{PM} ,使其兩兩相交於L,L,L,L,L,L,

因為 \overline{CK} 的中點,且 $\overline{DR}//\overline{KP}$,得到 $\overline{CR} = \overline{RP}$.

因為 $\angle L$, $PR = \angle NPQ$ (對頂角) = $\angle CDE = \angle RCE$, 且 $\angle L$, $RP = \angle CRE$ (對頂角),所以

$$\Delta PRL \cong \Delta CRE$$
 (ASA 全等)

同理可證得

$$\Delta DSL_2 \cong \Delta KSG, \Delta FOL_3 \cong \Delta HOJ, \Delta IML_4 \cong \Delta NMQ$$

因為 $\triangle CRE \cong \triangle KSG \cong \triangle HOJ \cong \triangle NMQ$,可知

$$\Delta DSL_2 \cong \Delta KSG \cong \Delta FOL_3 \cong \Delta HOJ \cong \Delta IML_4 \cong \Delta NMQ$$

故可推得

$$\angle L_1 = \angle L_2 = \angle L_3 = \angle L_4 = 90^{\circ}$$
且四邊形 $L_1L_2L_3L_4$ 四邊等長,

即上上上上上,上海正方形

(2)

因為
$$\overline{DE} = \overline{TU}$$
($\diamondsuit = a$), $\overline{CE} = \frac{1}{2}\overline{TU}$ ($= \frac{1}{2}a$),且 $\overline{CE}^2 = \overline{ER} \times \overline{ED}$,可推得 $\overline{ER} = \frac{1}{4}a$.

因為
$$\overline{L_1R} = \overline{ER}, \overline{L_2D} = \overline{CE}$$
,得到 $\overline{L_1L_2} = 2a = \overline{AC}$,所以

八邊形PRDSFOIM的面積 + ΔCRE + ΔKSG + ΔHOJ + ΔNMQ

- = 八邊形PRDSFOIM的面積 + ΔPRL_1 + ΔDSL_2 + ΔFOL_3 + ΔIML_4
- =正方形 $L_1L_2L_3L_4$ 面積
- $= \overline{L_1 L_2}^2$
- $=\overline{AB}^2$

5. 討論正方形 CNHK 的面積分割,進而推出勾股定理的關係式: 因為 $\Delta CDE \cong \Delta KFG \cong \Delta HIJ \cong \Delta NPQ \cong \Delta XTU$,所以

$$\Delta CDE + \Delta KFG + \Delta HIJ + \Delta NPQ =$$
 正方形 $WXYZ$ 面積

故

正方形CNHK面積 = $\Delta CDE + \Delta KFG + \Delta HIJ + \Delta NPQ +$ 八邊形PRDSFOIM的面積 + $\Delta CRE +$ $\Delta KSG + \Delta HOJ + \Delta NMQ$ = 正方形WXYZ面積 + 正方形 $L_1L_2L_3L_4$ 面積

因此

$$\overline{AB}^2 = \overline{BC}^2 + \overline{AC}^2$$

即

$$c^2 = a^2 + b^2.$$

【註與心得】

1.來源

2.心得:此證明是延續 G002,以任意正方形 WXYZ 為邊長,作一兩股比為2:1的直角三角形,再以斜邊及較長邊的股為邊長向外作正方形。利用短股邊上的正方形切割成四片全等直角三角形,再分別拚合在以斜邊為邊長的正方形上。此證明較為複雜,對於國中生而言較難以理解,但是若能以實際的教具操作,應當是可以清楚地了解到勾股定理與面積之間的幾何意義。

3.評量

國中	高中	教學	欣賞	美學
•			•	