【作輔助圖】
1. 分別以直角三角形\(ABC\)\(\overline { AC } \),\(\overline { BC } \)\(\overline { AB } \)為邊長,向外作正方形\(ACFG\),正方形\(BCED\)和正方形\(ABKH\)
2. 延長\(\overline { DE } \)\(\overline { FG } \),使得直線\(DE\)與直線\(FG\)相交於\(N\)點。
3. 過\(K\)作一直線平行\(\overline { FG } \),與直線\(DE\)相交於\(M\)點。
4. 過\(H\)作一直線平行\(\overline { DE } \),與直線\(FG\)相交於\(O\)點,與直線\(MK\)相交於\(Q\)點。
5. 分別延長\(\overline { FB } \)\(\overline { GA } \),使其分別與\(\overline { MQ } \)相交於\(L\)點,\(R\)點。
6. 延長\(\overline { EA } \),與\(\overline { OQ } \)相交於\(P\)點,延長\(\overline { DB } \),使其分別與\(\overline { AR } \),\(\overline { PQ } \)相交於\(S\)點,\(T\)點。
【求證過程】
以直角三角形\(ABC\)的三邊分別向外作三個正方形,利用正方形\(ABKH\)面積會等於正方形\(CPQL\)面積減去4個\(\triangle ABC \)面積,而推導出正方形\(ABKH\)面積會等於正方形\(BCED\)與正方形\(ACFG\)的面積和,最後推出勾股定理的關係式。
(閱讀全文,請下載附加檔案)
附加檔案:
FileFile size
Download this file (G063.pdf)G063.pdf221 Kb