【作輔助圖】
1. 分別以直角三角形\(ABC\)\(\overline { AC } \),\(\overline { BC } \)\(\overline { AB } \)為邊長,向外作正方形\(ACFG\),正方形\(BCED\)和正方形\(ABKH\)
2. 延長\(\overline { GA } \)\(\overline { DB } \),使得直線\(GA\)和直線\(DB\)相交於\(M\)點。
3. 過\(H\)作一直線平行\(\overline { AM } \)且與直線\(CA\)相交於\(P\)點。
4. 過\(K\)點作直線\(\overline { PH } \)的垂線,交直線\(\overline { PH } \)\(O\)點。
5. 延長\(\overline { AM } \),交\(\overline { KO } \)\(L\)點。
6. 連接\(\overline { MO } \)
【求證過程】
以直角三角形\(ABC\)的三邊分別向外作三個正方形,將正方形\(ABKH\)區域切割為兩個直角三角形和一個四邊形,再利用推移得到兩個平行四邊形,最後再證明這兩個平行四邊形的面積和會等於正方形\(BCED\)與正方形\(ACFG\)的面積和,進而推出勾股定理的關係式。
(閱讀全文,請下載附加檔案)
附加檔案:
FileFile size
Download this file (G055.pdf)G055.pdf274 Kb