勾股定理證明-G217
- 詳細內容
-
分類:魯米斯勾股證明(幾何篇)
-
發佈於:18 六月 2015
-
點擊數:507
【作輔助圖】
1. 以\(\overline { AC } \)為邊長,向外作一正方形\(ABDE\)。
2. 分別從\(D\)點作\(\overline { BC } \)的平行線,從\(E\)點作\(\overline { AC } \)的平行線,兩平行線交於\(F\)點。
3. 將\(\overline { AC } \)延長,取\(\overline { CG }=\overline { BC } \),再將\(\overline { BC } \)延長,取\(\overline { CH }=\overline { AC } \)。
4. 分別從\(H\)點作\(\overline { AG } \)的平行線,從\(G\)點作\(\overline { BH } \)的平行線,兩平行線交於\(K\)點。
5. 連接\(\overline { KC } \)、\(\overline { CF } \)、\(\overline { KA } \)、\(\overline { KB } \)、\(\overline { CE } \)、\(\overline { CD } \)。
【求證過程】
將大正方形面積換算兩塊平行四邊形的面積和,先證明當中的平行四邊形及三角形全等關係,再利用全等性質得到邊長關係而計算出面積,即可推得勾股定理關係式。
(閱讀全文,請下載附加檔案)