勾股定理證明-G119
- 詳細內容
-
分類:魯米斯勾股證明(幾何篇)
-
發佈於:10 三月 2015
-
點擊數:592
【作輔助圖】
1. 以\(\overline { AB } \)為邊,向內作一正方形\(ABDE\),以\(\overline { AC } \)為邊,向內作一正方形\(ACFG\),以\(\overline { BC } \)為邊,向外作一正方形\(BCHI\),且\(\overline { CH } \)交\(\overline { BD } \)於\(J\)點。
2. 延長\(\overline { DB } \)交\(\overline { FG } \)於\(K\)點。
3. 從\(E\)點作\(\overline { EL } \)平行\(\overline { BC } \)
4. 在\(\overline { EL } \)上作\(\overline { ML }=\overline { BC }\)。
5. 從\(M\)點作\(\overline { MN } \)平行\(\overline { AC } \)。
6. 連接\(\overline { DH } \)。
【求證過程】
作圖過程中將正方形\(ABDE\)分割為五個區塊,利用圖形間的全等關係,可比較出正方形\(ABDE\)面積與另外兩個正方形的關係式,進而推得勾股定理關係式。
(閱讀全文,請下載附加檔案)