作者:國立台灣師範大學數學系教授 許志農
 
在蔡倫發明紙張之前,中國只能將文字書寫在竹簡(竹子)上,因為竹簡細長,所以文字只能直寫,而且沒有空間可以畫圖;同樣處於沒有紙張的西方,他們將文字書寫在紙草或羊皮上,因為紙草或羊皮是整片的,所以可以畫圖。這個小小的差異,對數學的影響是巨大的,例如歐幾里得的《原本》與阿基米德在西西里島海灘上隨手畫的幾何圖形就能夠保存到現在,但中國的數學古籍就只能靠文字相傳,沒辦法透過圖形的輔助讓後人更清楚瞭解他們的想法。阿基米德在海灘上拿著竹竿邊畫圖邊思考的解題方式跟現代人在紙張上亂塗推理的方式很接近。在中世紀文藝復興時期,搞不好會做個木工工藝或石頭雕刻來幫助理解與實際驗證所考慮的問題。但處於科技革命的時代,又多了一項解題方式…借助電腦動畫思考。
總之,目前我們至少有三種不同的思考方式…利用紙上談兵,工藝實做推敲與電腦動畫模擬。《戲說數學》盡可能把每道遊戲都寫出可在電腦上操作的 Flash 版本。至於仍無法完成 Flash 版本的遊戲,希望可以做出木工道具來實際操作一番。就讓我們來介紹這節的遊戲: 
 

在長方形的酒櫃隨意擺放完全一樣的紅酒十三瓶,如下圖所示,只要求最底層擺三瓶,其中的左右兩瓶需與側邊相切:
看起來,最上層所擺放的三瓶酒之高度一樣,真的會這麼巧嗎?

既然這道遊戲起因於酒櫃的十三瓶酒的擺放藝術,就讓我們回到達文西與米開朗基羅的文藝復興時代,實際做個工藝品來把玩與驗證一下!如果有幸到我的辦公室一趟,你將看到我為這道遊戲所做的一件工藝品…在邊長約30公分的方形木板內,擺放著每個直徑差不多7公分左右的實木圓盤,總共有13個圓盤,而且可以把它掛起來欣賞,心情不好時,也可以把這13個實木圓盤重新擺放一番。
為了做這件工藝品,從找木材店到購買圓柱形木頭,木板,鋸子,磨砂紙,最後自己施工起來。老實說,這13個實木圓盤鋸得很不平整,用磨砂紙磨了好一段時間才勉強可用。在規劃與製作這件工藝品時,我回想高中工藝老師教我的知識,同時也讓我回想起高中的一件糗事:原來我高中工藝筆試是補考過的。記得那次段考的第一節考英文,工藝筆試排在第二節考,我與室友住在南一中附近租來的房子,為了準備英文,前一晚我們都很晚睡,雖然設定了鬧鐘,但是早上醒來時,工藝筆試已快考完了,原因就是睡夢中將鬧鐘給按掉了。事後我們買了一個鳥籠,把鬧鐘關在籠子裡,再買一道鎖,將鳥籠的門鎖上,這樣就不會按掉鬧鐘了。
當我將工藝品幾乎做好的同時,想到一個更好的操作方式,就是拿個寬約9~10公分的市售相框,再取13枚直徑2.5公分的拾圓銅板,把它們擺在相框內,就可以玩這道遊戲了,如下圖所示:
 
 
現在讓我們以紙上談兵的方式,讓讀者相信最上層的三瓶酒的擺放高度會一樣:
首先,將長方形的框框去掉,並將與框框相切圓的圓心連接,如左圖所示:
 
 
因為右下角落的三條線段都等於圓盤的直徑,所以P,Q,R三點落在以C為圓心,為半徑的圓上。又為直角,所以P,Q,R三點共一直線,且C是線段PQ的中點。同理,右圖中的另外三點也會共線。
如此,我們得到下圖中的田字是一個平行四邊形,而且交叉的兩條線分別過邊上的中點。
 
接著考慮左上角的三角形,如下圖所示:
 
因為P,Q,R三點共線,所以是圖中圓的直徑,即為直角。所以PQ等高。同理我們也可以證得右上兩圓盤的圓心等高,所以得證。
最後做個延伸,如果酒櫃的寬度夠寬,可以擺放更多瓶的紅酒,例如最底層擺放n瓶紅酒好了,那麼往上堆放更多的紅酒時,會有等高的情形發生嗎?又需要堆幾瓶紅酒才會發生呢?如果將酒櫃改成柱體容器(如三角柱,正方形柱,正五邊形柱…等),將半徑相等的球放入容器內,那麼會有等高的情況發生嗎?
 
 
附加檔案:
FileFile size
Download this file (35 saymathsgame.pdf)35 saymathsgame.pdf244 Kb