教育部九十六學年度高級中學數學競賽

嘉義區複賽試題(一)【參考解答】

一、【解】

(1) 從 F 向 EB 的長線作垂線 FK。因直角三角形 ΔABC, ΔBFK 中,BC=BF,

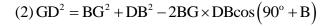
$$\therefore$$
 AB = KB, AC = KF

在直角三角形 ΔEFK 中,

$$FE^2 = EK^2 + KF^2 = (2AB)^2 + (AC)^2$$

$$(HG)^2 = (2AC)^2 + (AB)^2$$

$$(EF)^2 + (HG)^2 = 5(AB)^2 + 5(AC)^2 = 5(BC)^2$$
.



$$= 2(BC^2 + AB^2 + 2BC \cdot AB\sin B)$$

$$= 2(BC^2 + AB^2 + 2AC \cdot AB)$$

同理,
$$IF^2 = 2(BC^2 + AC^2 + 2AC \cdot AB)$$

$$GD^{2} + FI^{2} = 6BC^{2} + 8AC \cdot AB = 10BC^{2} - 4(AC - AB)^{2}$$

$$\left(\because BC^2 = \left(AC - AB\right)^2 + 2AC \cdot AB\right)$$

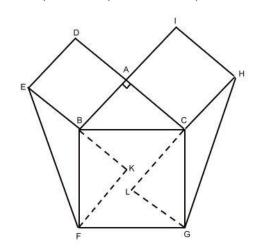
$$8AC \cdot AB = BC^2 = AB^2 + AC^2$$

或
$$8AC \cdot AB = 2(AB^2 + AC^2)$$

或
$$8AC \cdot AB = 3(AB^2 + AC^2)$$

或
$$8AC \cdot AB = 4(AB^2 + AC^2)$$

故
$$\frac{AC}{AB} = 1$$
, $\frac{4}{3} \pm \frac{\sqrt{7}}{3}$, $2 \pm \sqrt{3}$, $4 \pm \sqrt{15}$.



二、【證】

可設 f(x) 及 g(x) 的最高次係數為 1,且 $f(x)=(x-\lambda)(x-\mu)(x-\nu)$ 。若 1,2,3,4,5,6,7,8,9 為 f(g(x))=0 的解,則

$$g(x) - \lambda = (x - l_1)(x - l_2)(x - l_3)$$

$$g(x) - \mu = (x - m_1)(x - m_2)(x - m_3) \circ$$

$$g(x) - \nu = (x - n_1)(x - n_2)(x - n_3)$$

因此 $(x-l_1)(x-l_2)(x-l_3)$, $(x-m_1)(x-m_2)(x-m_3)$, $(x-n_1)(x-n_2)(x-n_3)$ 除常數項外係數均相等。故

$$l_1 + l_2 + l_3 = m_1 + m_2 + m_3 = n_1 + n_2 + n_3 = 15$$

$$l_1^2 + l_2^2 + l_3^2 = m_1^2 + m_2^2 + m_3^2 = n_1^2 + n_2^2 + n_3^2 = 95$$

若 $n_1 = 9$,則 $n_2^2 + n_3^2 = 14$,由此得 $(n_2 + n_3)^2 \le 2(n_2^2 + n_3^2) = 28$,但這與 $n_2 + n_3 = 6$ 矛盾。

三、【解】

設任何兩個3×3子方陣其數字和相等,則任一行或列其中三個數字和均相等(考慮在一3×4子方陣中的所有3×3子方陣),由此知所有數字均相等,與假設矛盾。(註:所謂3×3子方陣,是任意三行、三列所交成的方陣,不要求是由連續的三行及連續三列所構成的)

四、【解】

可假設 $0 \le \theta \le \frac{\pi}{4}$ 。令 $t^2 = 2 - \cos \theta$, $s^2 = 2 - \sin \theta$, $t, s \ge 1$ 。則 $(2 - t^2)^2 + (2 - s^2)^2 = 1$,此可改寫為 $2t^2s^2 = (t^2 + s^2 - 2)^2 + 3$ 。而

$$t^{2} + s^{2} - 2 = 2 - (\cos \theta + \sin \theta)$$
$$= 2 - \sqrt{2}\sin(45^{\circ} + \theta)$$
$$\geq 2 - \sqrt{2}$$

故
$$t^2s^2 = \frac{1}{2} \left[(t^2 + s^2 - 2)^2 + 3 \right] \ge \frac{1}{2} (9 - 4\sqrt{2})$$
 。 因

$$\frac{1}{t} + \frac{1}{s} \le \frac{4}{\sqrt{5}} \Leftrightarrow \frac{(t+s)^2}{(ts)^2} \le \frac{16}{5} \Leftrightarrow 16(ts)^2 - 5(t+s)^2 \ge 0$$

而

$$16(ts)^{2} - 5(t+s)^{2} = 5(t^{2}s^{2} - t^{2} - s^{2} + 1) + 11(ts)^{2} - 10ts - 5$$
$$\ge 11(ts)^{2} - 10ts - 5$$

故若 $11(ts)^2 - 10ts - 5 \ge 0$ 要證的不等式成立。若 $ts \ge \frac{5 + \sqrt{80}}{11}$,則 $11(ts)^2 + 40$ $ts \le 20$ 。

但
$$t^2s^2 \ge \frac{1}{2}(9-4\sqrt{2}) \ge \left(\frac{5+\sqrt{81}}{11}\right)^2 \ge \left(\frac{5+\sqrt{80}}{11}\right)^2$$
,故得證。