教育部 101 學年度高級中學數學競賽

台中區複賽試題(一) 編號:____

(時間二小時)

注意事項:

- 1.本試卷共五題計算證明題,滿分為四十九分。
- 2.請將答案寫在答案欄內,計算紙必須連同試卷交回。

一、證明 $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{67}$ 化為最簡分數後,分子可被 101 整除。 (99) 二、設 P(x) 為一整係數多項式,且存在一正整數 k 使得整數 (109) P(1), P(2), ..., P(k) 皆不可被 k 整除,試證 P(x)=0 無整數 (109) 根。

三、考慮由 n 個 0, 1 組成且 01 剛好出現 m 次的數字串(如 10110101 $^{(10\, f)}$ 是由 8 個 0, 1 組成,且 01 剛好出現 3 次的數字串)。令 f(n,m) 為 所有這種數字串的個數。證明

$$f(n,m) = \binom{n+1}{2m+1} \circ$$

四、設 $a_1 = 3$, $a_n = \frac{1}{2} \left(a_{n-1} + \frac{7}{a_{n-1}} \right)$, 其中 n = 2, 3,, 10。證明 (10分)

$$0 < a_{10} - \sqrt{7} < 10^{-613}$$
 °

五、 $\triangle ABC$ 的外接圓為 O , D 為 BC 邊上一點,圓 K 與線段 $^{(10\,\, \, \, \,)}AD$, DC 及圓 O 相切(圓 K 在線段 AD , DC 及劣弧 AC 所圍 的區域內),切點分別為 P , Q 及 R 。 證明 $\angle PRQ = \frac{\angle A + \angle C}{2}$ 。