九十九學年度高級中學數學能力競賽決賽

題目:	已名	知橢圓 $\frac{x^2}{2} + \frac{y^2}{2} = 1$ 的左、右焦點分别為 $F_1 \times F_2$,過 F_1 的直
	線	交橢圓於 B^{c} D 雨點,過 F_2 的直線交橢圓於 $A \cdot C$ 雨點,
	且在	$\overline{AC} \perp \overline{BD}$, 垂足為 P 。試求四邊形 $ABCD$ 的面積的最小值。
試題來源		□ 自 編 □ 改編於:
類	別	□代數□數論□組合□幾何
難易	度	□ 難 □ 中等 □ 編號 獨立研究(一)第一 易 題
解答:	(i)	當 \overline{BD} 的斜率 k 存在且 $k \neq 0$ 時, \overline{BD} 的方程為 $y = k(x+1)$,
	代ノ	入橢圓方程 $\frac{x^2}{3} + \frac{y^2}{2} = 1$, 並化簡得 $(3k^2 + 2)x^2 + 6k^2x + 3k^2 - 6 = 0$.
	設 <i>E</i>	$B(x_1, y_1)$, $D(x_2, y_2)$,則
		$x_2 = -\frac{6k^2}{3k^2 + 2}$, $x_1 x_2 = \frac{3k^2 - 6}{3k^2 + 2}$,
	\overline{BD}	$= \sqrt{1+k^2} \cdot \left x_1 - x_2 \right = \sqrt{(1+k^2) \cdot \left[(x_2 + x_2)^2 - 4x_1 x_2 \right]} = \frac{4\sqrt{3}(k^2 + 1)}{3k^2 + 2} ;$
	因為	為 \overline{AC} 與 \overline{BC} 相交於點 p ,且 \overline{AC} 的斜率為 $-\frac{1}{k}$,
	所以	$ \frac{AC}{AC} = \frac{4\sqrt{3}\left(\frac{1}{k^2} + 1\right)}{3 \times \frac{1}{k^2} + 2} = \frac{4\sqrt{3}(k^2 + 1)}{2k^2 + 3}. $
	四边	邊形 ABCD 的面積
	S =	$\frac{1}{2} \cdot \overline{BD} \cdot \overline{AC} = \frac{24(k^2 + 1)^2}{(3k^2 + 2)(2k^2 + 3)} \ge \frac{24(k^2 + 1)^2}{\left[\frac{(3k^2 + 2) + (2k^2 + 3)}{2}\right]^2} = \frac{96}{25}.$
	尝 k	
	•	當 \overline{BD} 的斜率 $k=0$ 或斜率不存在時,四邊形 $ABCD$ 的面積
S=4.		合以上所論,四邊形 $ABCD$ 的面積的最小值為 $\frac{96}{25}$.

九十九學年度高級中學數學能力競賽決賽

題目:	已知正數 a,b,c 滿足條件 a+b+c=3, 試證:		
(3-	$-2a)(3-2b)(3-2c) \le a^2b^2c^2 \circ$		
試題來源	□ 自 編 □ 改編於:		
類 別	□代數□數論□組合□幾何		
難易度	□ 難 □ 中等 □ 編 號 獨立研究(一)第二 易 題		
解答:為不	、失一般性,不妨假設 $a \le b \le c$ 。		
(1)	如果 $a+b \le c$,由 $a+b+c=3 \le 2c \Rightarrow c \ge \frac{3}{2}$ 。		
Хa	$a+b+c=3 \ge 3a \Rightarrow a \le 1 < \frac{3}{2}, : b < \frac{3}{2}$		
因止	$ + (3-2a)(3-2b)(3-2c) < 0 \le a^2b^2c^2 $		
(2)	如果 $a+b>c$, 令 $s=\frac{a+b+c}{2}=\frac{3}{2}$, 所以		
(3-	$2a)(3-2b)(3-2c) \le a^2b^2c^2 \iff 8(s-a)(s-b)(s-c) \le a^2b^2c^2 \circ$		
,	門可考慮a,b,c構成一三角形的三邊長,由三角形面積公式知,		
令三	三角形面積為 A ,則 $A^2 = s(s-a)(s-b)(s-c) = (\frac{abc}{4R})^2$,		
其中	PR為三角形外接圓的半徑。		
田山			
	$8A^2 \le s(abc)^2 = 16sR^2A^2 \Rightarrow 1 \le 2sR^2 \Leftrightarrow 1 \le 3R^2$		
只需	客證明: $a+b+c=2s=3\leq 3\sqrt{3}R \Rightarrow 1\leq 3R^2$,		
利用	月正弦定理及合分比性質,得		
	$= \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = \frac{a+b+c}{\sin A + \sin B + \sin C} , X$		
$\sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2} ,$			
	$2 \cdot 2R = \frac{a+b+c}{\sin A + \sin B + \sin C} \ge \frac{2}{3\sqrt{3}}(a+b+c) \Rightarrow 3\sqrt{3}R \ge a+b+c ,$		
	PA,B,C表示此三角形之三內角, 故得証。		

九十九學年度高級中學數學能力競賽決賽

題目: 設 a,b 為正整數。若 $a+2b$ 為 41 的倍數,且 $a-2b$ 為 43 的倍					
數	,				
求	a+b的最小值。				
試題來源	□ 自 編 □ 改編於:				
類 別	□代數□數論□組合□幾何				
難易度	□ 難 □ 中等 □ 編號 獨立研究(一)第三				
	易				
解答:因 $a+2b$ 為 41 的倍數,得 $21a+b=21(a+2b)-41b$ 亦為 41 的倍數;					
同樣的,因 $a-2b$ 為 43 的倍數,					
得 $21a+b=21(a-2b)+43b$ 為 43 的倍數。					
因 41 與 43 互質,故 21a+b 為 41×43=1763 的倍數。					
$21(a+b) = 1763n + 20b = (21 \times 84)n - n + 21b - b = (21 \times 84)n + 21b - (n+b)$					
從而得 $n+b$ 為 21 的倍數。					
故 $a+b=83n+20(n+b)/21 \ge 83+20=103$ °					
當 $n=1$, $b=20$ 時 , $a+b=103$ 為最小 , 這時 $a=83$ 。					
檢驗 a+2b=83+40=123=3×41 , a-2b=83-40=43 合乎所求。					
	此 <i>a+b</i> 的最小值為 103。				