九十七學年度高級中學數學能力競賽決賽

題目: 設實數 $\lambda \ge 1$,且實係數多項式函數 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ 滿足:

$$\lambda a_0 + \sum_{k=1}^n a_k = 0 \quad \circ$$

試證: f(x)=0 在 $0 \le x \le 1$ 的範圍內至少有一實根。

試題	夏來	源	自	編		改為	編於	:			
類		別	代	數		數	論		□ 組	合	□ 幾 何
難	易	度	難		中等			易	編	號	筆試(一)第一題

參考解答:

- (1) 當 $\lambda=1$ 時, $f(1)=a_{\scriptscriptstyle n}+a_{\scriptscriptstyle n-1}+\dots+a_{\scriptscriptstyle 1}+a_{\scriptscriptstyle 0}=0$,即 f(x)=0 有一實根 x=1 。
- (2) 當 $\lambda > 1$ 時,由於 $\sum_{k=0}^{n} a_k = (1-\lambda)a_0$,我們有
 - (i) $a_0=0$ 時, $f(1)=a_n+a_{n-1}+\cdots+a_1+a_0=0$,即 f(x)=0 有一實根 x=1。
 - (ii) $a_0 \neq 0$ 時, $\sum_{k=0}^{n} a_k$ 與 a_0 為異號的兩實數,而 $f(0) = a_0$ 且 $f(1) = \sum_{k=0}^{n} a_k$, 故 $f(0) \cdot f(1) < 0$ 。因此,由多項式函數的堪根定理知, f(x) = 0 在 0 < x < 1 的範圍內至少有一實根。
- 【另證】因 $f(0)\cdot f(1) = a_0 \cdot \sum_{k=0}^n a_k = a_0 \cdot (1-\lambda) a_0 = (1-\lambda) a_0^2 \le 0$,故由多項式函數的堪根定理知 f(x) = 0 在 $0 \le x \le 1$ 的範圍內至少有一實根。

九十七學年度高級中學數學能力競賽決賽

題目:設 a,b,c 為正實數,試證: $\frac{a^4}{b^3} + \frac{b^4}{c^3} + \frac{c^4}{c^3} \ge \frac{a^3}{b^2} + \frac{b^3}{c^2} + \frac{c^3}{c^2} \ge \frac{a^2}{b} + \frac{b^2}{c^2} + \frac{c^2}{c^2}$ \circ 試題來源 改編於: Diamonds in Math.Inequalities 代 數 □ 數 論 别 □ 組 合 □ 幾 何 類 筆試(一)第二題 難易度 號 參考解答:利用算幾不等式, $\frac{a^3}{b^2} + a \ge 2\sqrt{\frac{a^3}{b^2}} \cdot a = \frac{2a^2}{b}$, 同理, $\frac{b^3}{c^2} + b \ge \frac{2b^2}{c}$, $\frac{c^3}{a^2} + c \ge \frac{2c^2}{a}$ 。將這三式相加,可得 $\left(\frac{a^3}{b^2} + \frac{b^3}{c^2} + \frac{c^3}{c^2}\right) + (a+b+c) \ge 2\left(\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2}\right) \circ$ (1) 另一方面, $\frac{a^2}{h}+b\geq 2\sqrt{\frac{a^2}{h}\cdot b}=2a$,同理, $\frac{b^2}{c}+c\geq 2b$, $\frac{c^2}{a}+a\geq 2c$ 。再將三式相加得 $\left(\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a}\right) + (a+b+c) \ge 2(a+b+c)$,因此, $\frac{a^2}{b} + \frac{b^2}{a^2} + \frac{c^2}{a^2} \ge a + b + c$ (2) $\left(\frac{a^3}{b^2} + \frac{b^3}{c^2} + \frac{c^3}{c^2}\right) + (a+b+c) \ge 2\left(\frac{a^2}{b} + \frac{b^2}{c^2} + \frac{c^2}{c^2}\right) \ge \left(\frac{a^2}{b} + \frac{b^2}{c^2} + \frac{c^2}{c^2}\right) + (a+b+c) \circ$ 於是可得: $\frac{a^3}{h^2} + \frac{b^3}{a^2} + \frac{c^3}{a^2} \ge \frac{a^2}{h} + \frac{b^2}{a^2} + \frac{c^2}{a^2}$ o (3) 其次, $\frac{a^4}{L^3} + \frac{a^2}{L} \ge 2\sqrt{\frac{a^4}{L^3} \cdot \frac{a^2}{L}} = \frac{2a^3}{L^2}$,同理, $\frac{b^4}{c^3} + \frac{b^2}{c} \ge \frac{2b^3}{c^2}$, $\frac{c^4}{a^3} + \frac{c^2}{a} \ge \frac{2c^3}{a^2}$ 。將這三 式相加,可得 $\left(\frac{a^4}{b^3} + \frac{b^4}{c^3} + \frac{c^4}{a^3}\right) + \left(\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a}\right) \ge 2\left(\frac{a^3}{b^2} + \frac{b^3}{c^2} + \frac{c^3}{a^2}\right)$ $(\frac{a^4}{b^3} + \frac{b^4}{a^3} + \frac{c^4}{a^3}) + (\frac{a^2}{b^2} + \frac{b^2}{a^2} + \frac{c^2}{a^2}) \ge 2(\frac{a^3}{b^2} + \frac{b^3}{a^2} + \frac{c^3}{a^2}) \ge (\frac{a^3}{b^2} + \frac{b^3}{a^2} + \frac{c^3}{a^2}) + (\frac{a^2}{b^2} + \frac{b^2}{a^2} + \frac{c^2}{a^2})$ 於是可得: $\frac{a^4}{b^3} + \frac{b^4}{c^3} + \frac{c^4}{c^3} \ge \frac{a^3}{b^2} + \frac{b^3}{c^2} + \frac{c^3}{c^2}$ °

九十七學年度高級中學數學能力競賽決賽

題目: 設 P 為 $\triangle ABC$ 內部一點,且 P 到三邊 \overline{BC} , \overline{CA} , \overline{AB} 的垂足分別為 X,Y,Z, 並設 $\triangle APB$ 及 $\triangle APC$ 的內心分別為 Q,R,且

$$\angle APB - \angle C = \angle CPA - \angle B$$
 °

(1) 試證: ∠YXZ = ∠BPC - ∠A;

(2) 試證: AP, BQ, CR 三線共點。

試題來源	□自編	■ 改編於:1996	6 IMO Pro	oblem Shortlist
類 別	□ 代 數	□ 數 論 □	組合	幾 何
難 易 度	董	□ 中等 □ 易 #	編號	筆試(一)第三題

參考解答:

(1) 因 B, X, P, Z 四點共圓,得 $\angle ABP = \angle ZXP$;又由 C, Y, P, X 四點共圓,得 $\angle ACP = \angle PXY$ 。因此,

$$\angle A = 180^{\circ} - (\angle B + \angle C) = 180^{\circ} - (\angle ABP + \angle PBC + \angle ACP + \angle PCB)$$

$$=180^{\circ} - (\angle ZXP + \angle PBC + \angle PXY + \angle PCB) = (180^{\circ} - \angle PBC + \angle PCB) - (\angle ZXP + \angle PXY)$$

 $= \angle BPC - \angle YXZ$; $\& \angle YXZ = \angle BPC - \angle A \circ$

(2)令直線 BQ 與 CR 分別交 AP 於 V,W 。欲證 V,W 兩點重合,僅需證明 $\frac{\overline{AB}}{\overline{BP}} = \frac{\overline{AC}}{\overline{CP}}$,

(因為此時利用角平分線比例性質,可得
$$\frac{\overline{AV}}{\overline{VP}} = \frac{\overline{AB}}{\overline{RP}} = \frac{\overline{AC}}{\overline{CP}} = \frac{\overline{AW}}{\overline{WP}}$$
,於是, $V = W$ 。)

由(1)得 $\angle YXZ = \angle BPC - \angle A$,同理 , $\angle XZY = \angle APB - \angle C$, $\angle ZYX = \angle CPA - \angle B$ 。

因此,
$$\angle XZY = \angle ZYX$$
 ,而有 $\overline{XY} = \overline{XZ}$ 。又利用正弦定理,可知

$$\overline{PC} = \frac{\overline{PC}}{\sin \angle PXC} = \frac{\overline{XC}}{\sin \angle XPC} = \frac{\overline{XC}}{\sin \angle XYC} = \frac{\overline{XY}}{\sin C}$$
 ; 同理, $\overline{PB} = \frac{\overline{XZ}}{\sin B}$ 。故得

$$\overline{AB} \cdot \overline{CP} / \overline{AC} \cdot \overline{BP} = \overline{AB} \cdot \frac{\overline{XY}}{\sin C} / \overline{AC} \cdot \frac{\overline{XZ}}{\sin B} = \frac{\overline{AB}}{\sin C} / \frac{\overline{AC}}{\sin B} = 1$$
,





