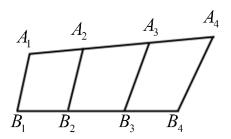
九十七學年度高級中學數學能力競賽決賽

題目:如下圖所示, $\overline{A_1A_2} = \overline{A_2A_3} = \overline{A_3A_4}$, $\overline{B_1B_2} = \overline{B_2B_3} = \overline{B_3B_4}$ 。試證:

四邊形 $A_1B_1B_2A_2$ 、 $A_2B_2B_3A_3$ 、 $A_3B_3B_4A_4$ 的面積成等差數列。



試題來源	■自編] 改編於:	
類 別	□代數□]數論 □組合	■ 幾 何
難 易 度	□ 難 □ 中3	等 ■ 易 編 號	口試第一題

參考解答:

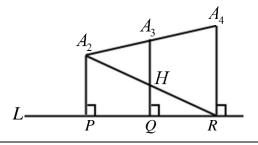
連接 A_2B_1 , A_3B_2 , A_4B_3 ,只要證明 $\Delta B_1A_2B_2$, $\Delta B_2A_3B_3$, $\Delta B_3A_4B_4$ 的面積成等差,同理可證 $\Delta A_1B_1A_2$, $\Delta A_2B_2A_3$, $\Delta A_3B_3A_4$ 的面積亦成等差,即可證得原題之要求。

因為 $\overline{B_1B_2}=\overline{B_2B_3}=\overline{B_3B_4}$,所以只要證明由 A_2 , A_3 , A_4 分別對 B_1B_2 , B_2B_3 , B_3B_4 所作的高成等差即可!

如下圖所示,分別由 A_2 , A_3 , A_4 分別對 B_1 , B_2 , B_3 , B_4 所在的直線 L 作垂線,設 垂足分別為 P,Q,R。因為 $A_2P/\!/A_3Q/\!/A_4R$,且 $\overline{A_2A_3}=\overline{A_3A_4}$,所以 $\overline{PQ}=\overline{QR}$ 。

設 $\overline{A_2R}$ 交 $\overline{A_3Q}$ 於 H,則 $\overline{A_3H} = \frac{1}{2}\overline{A_4R}$, $\overline{QH} = \frac{1}{2}\overline{A_2P}$,故 $\overline{A_3Q} = \frac{1}{2}(\overline{A_4R} + \overline{A_2P})$,

即 $\overline{A_2P}$, $\overline{A_3Q}$, $\overline{A_4R}$ 成等差,故得證!



九十七學年度高級中學數學能力競賽決賽

題目:考慮 1,2,3,...,n 的任意排列 $a_1,a_2,a_3,...,a_n$,令 f(n) 表示 n 層絕對 值 $\|\|a_1|-a_2|-a_3|-...|-a_n|$ 的最大值,例如:當 n=3 時, f(3) 表示 $\|a_1|-a_2|-a_3|$ 的最大值,其中 a_1,a_2,a_3 為 1,2,3 的任意排列。試求 f(97) 之值。

試見	題來	源	□自編			■改	改編於:NSC86-2511-S-003-038			
類		別		代	數	□ 數	於論	組	. 合	□ 幾 何
難	易	度		難		中等	□易	編	號	口試第二題

參考解答:

首先,證明:每一正整數 n, $f(n) \le n$ 。

事實上,利用不等式: $|a-b| \le \max\{a,b\}$ 對任意雨正數 a,b 都成立,可得

$$f(n) \le \max\{a_1, a_2, a_3, \dots, a_n\} = n$$
 °

於是, f(97)≤97。

另一方面,可以構造出 1, 2, 3, ···, 97 的一組排列, 使其 97 層絕對值為 97, 例如:取

利用 |||(a+3)|-(a+2)|-(a+1)|-a|=0 對任意正數 a 恆成立,可得到它們的 97 層絕

對值為 97。因此,可推得 f(97) = 97。

至於 f(98) 之值,我們可以利用:對任意整數 a,b , |a-b| 與 a+b 之奇偶性必相同;於是, f(n) 與 $a_1+a_2+a_3+\cdots+a_n$ 有相同的奇偶性。特別的,

$$1+2+3+\cdots+98\equiv 1\pmod{2}$$

故 f(98)<98,即 $f(98)\leq 97$ 。以下可以構造出 $1,2,3,\cdots,98$ 的一組排列,使其 98 層絕對值為 97,例如:取 $97,96,95,94;93,92,91,90;\cdots;5,4,3,2;1;98$ 。因此,可以得知 f(98)=97 。