

Language: Chinese (Traditional)

Day:

2010年7月7日,星期三

問題 1. 找出所有函數 $f: \mathbb{R} \to \mathbb{R}$, 使得等式

$$f([x]y) = f(x)[f(y)]$$

對於所有 $x, y \in \mathbb{R}$ 都成立。(這裡 [z] 表示小於或等於 z 的最大整數。)

問題 2. 令 I 爲三角形 ABC 的內心, 且 Γ 爲此三角形的外接圓。令 D 爲直線 AI 與圓 Γ 相交的另外一點。令 E 爲弧 \widehat{BDC} 上的一點且 F 爲邊 BC 上的一點,使得

$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$

最後再令 G 爲線段 IF 的中點。 證明: 直線 DG 與 EI 的交點落在圓 Γ 之上。

問題 3. 令 \mathbb{N} 為正整數的集合。找出所有的函數 $g: \mathbb{N} \to \mathbb{N}$, 對於所有的 $m, n \in \mathbb{N}$, 使得

$$(g(m)+n)(m+g(n))$$

是一個完全平方數。

Language: Chinese (Traditional)

考試時間: 4 小時 30 分

每題 7分

Language: Chinese (Traditional)

Day: **2**

2010年7月8日,星期四

問題 **4.** 令 P 爲三角形 ABC 內部的一點。直線 AP,BP,CP 與三角形 ABC 的外接圓 Γ 的另一交點 分別爲點 K,L,M. 令通過點 C 之圓 Γ 的切線與線 AB 相交於 S. 假設 SC=SP. 試證: MK=ML.

問題 5. 在六個盒子 $B_1, B_2, B_3, B_4, B_5, B_6$ 中, 最初每個都只有一枚硬幣。有兩種操作方法可以執行:

方法 1: 選一個非空的盒子 B_j $(1 \le j \le 5)$. 從 B_j 中拿走一枚硬幣, 並且在 B_{j+1} 中多加入兩枚 硬幣。

方法 2: 選一個非空的盒子 B_k ($1 \le k \le 4$). 從 B_k 中拿走一枚硬幣, 並且將 B_{k+1} 與 B_{k+2} 中的 所有硬幣彼此交換位置 (有可能是空盒子)。

試問: 是否存在一種有限的操作序列可以讓盒子 B_1, B_2, B_3, B_4, B_5 都是空的, 並且此時盒子 B_6 正好有 $2010^{2010^{2010}}$ 枚硬幣? (其中 $a^{b^c}=a^{(b^c)}$.)

問題 **6.** 令 a_1, a_2, a_3, \ldots 為一個序列的正實數。假設存在某個正整數 s, 對於所有的 n > s, 我們有 $a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n-1\}.$

證明: 存在正整數 ℓ ($\ell \leq s$) 與 N, 對於所有的 $n \geq N$, 使得 $a_n = a_\ell + a_{n-\ell}$.

Language: Chinese (Traditional)

考試時間: 4 小時 30 分

每題 7分