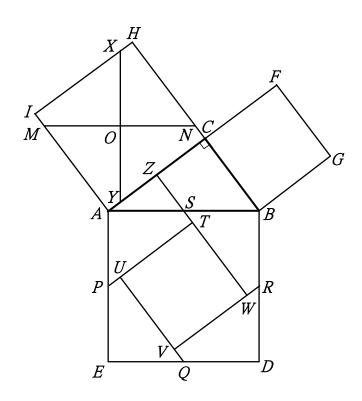
勾股定理證明-G009

【作輔助圖】

- 1. 以 \overline{AB} , \overline{AC} , \overline{BC} 為邊長向外作正方形 ABDE,ACHI,BCFG。
- 2. 取正方形 ABDE 四邊之中點 P,Q,R,S ,並作 \overline{PT} / $/\overline{RV}$ / $/\overline{AC}$, \overline{SW} / $/\overline{QU}$ / $/\overline{BC}$ 。
- 3. 取正方形 ACHI 之中心O, 並作 $\overline{XY}//\overline{AE},\overline{MN}//\overline{AB}$ 。



【求證過程】

先證明正方形 ABDE, ACHI 中的四片四邊形彼此全等,再討論正方形 ACHI 中的四片四邊形與正方形 BCFG,可拼合出正方形 ABDE 的區域,再利用面積和相等的關係,可推出勾股定理的關係式。

1. 先證明UTWV 為矩形,進而推得 $\angle AST = \angle BRW$, $\angle APT = \angle BSW$ 。

因為 \overline{PT} // \overline{AC} // \overline{VR} , \overline{WS} // \overline{BC} // \overline{QU} 且 $\angle ACB = 90^{\circ}$,所以

四邊形UTWV 為矩形。

因為 $\angle SBR + \angle SWR = 180^{\circ}$,可得 $\angle BSW + \angle BRW = 180^{\circ}$,又 $\angle BSW + \angle AST = 180^{\circ}$,所以

$$\angle AST = \angle BRW$$

同理可得

 $\angle APT = \angle BSW$

2. 證明四邊形 SWRB, PTSA, QUPE, RVQD 全等。

因為S, P, Q, R 為正方形ABDE 四邊的中點,可得 $\overline{AP} = \overline{AS} = \overline{SB} = \overline{BR}$,又 $\angle PAS = 90^\circ = \angle RBS$,所以

 $\triangle APS \cong \triangle BSR(SAS \ \text{全等})$,可得到 $\overline{PS} = \overline{RS}$, $\angle ASP = \angle BRS$ 。

因為 $\angle PST = \angle AST - \angle ASP = \angle BRW - \angle BRS = \angle SRW$,又 $\overline{PS} = \overline{RS}$, $\angle PTS = 90$ ° = $\angle SWR$,所以

ΔPTS ≅ ΔSWR(AAS 全等)

因為 $\triangle APS \cong \triangle BRS, \triangle PTS \cong \triangle SWR$,所以

四邊形 SWRB 與四邊形 PTSA 全等。

同理可推得

四邊形 SWRB, PTSA, QUPE, RVQD 全等。

3. 證明四邊形*UTWV* 為正方形

因為 $\overline{ST} = \overline{WR} = \overline{VQ} = \overline{UP}$, $\overline{SW} = \overline{RV} = \overline{QU} = \overline{PT}$,可得 $\overline{UT} = \overline{TW} = \overline{WV} = \overline{VU}$,又 $U\overline{IWV}$ 為矩形,所以

四邊形UTWV 為正方形。

4. 證明 *O*, *S*, *T* 共線。

因為S為 \overline{AB} 的中點,且 \overline{TS} // \overline{BC} ,推得 \overline{TS} 垂直平分 \overline{AC} 於Z ,又O 為正方形 ACHI 的中心,可得到 \overline{OZ} 垂直 \overline{AC} ,所以

O,S,T 共線。

5. 證明四邊形 OYCN, OMAY, OXIM, OCHX 全等。

因為 \overline{MN} / / \overline{AB} , \overline{XY} / / \overline{AE} , $\angle BAE = 90^\circ$,可得 $\angle NOY = 90^\circ = \angle MOY$,又因為 \overline{AM} / / \overline{SO} / / \overline{BC} ,且 $\overline{AS} = \overline{BS}$,可得四邊形 ABNM 為平行四邊形,所以 $\overline{ON} = \overline{MO}$,又 $\overline{OY} = \overline{OY}$,故

 $\Delta YOM \cong \Delta YON \text{ (SAS } \text{\pm\$)}, \ \exists \overline{YM} = \overline{YN} \text{\circ}$

因為 $\angle NOY + \angle NCY = 180^\circ$,可推得 $\angle ONC + \angle OYC = 180^\circ = \angle OYA + \angle OYC$,得到 $\angle ONC = \angle OYA$,又 $\angle ONY = \angle OYM$,可推得 $\angle CNY = \angle ONC - \angle ONY = \angle OYA - \angle OYM = \angle AYM$,又因為 $\angle YAM = 90^\circ = \angle NCY, \overline{YN} = \overline{YM}$,所以

ΔΥMA ≅ ΔNYC (AAS 全等)

因為 $\Delta YOM \cong \Delta YON, \Delta YMA \cong \Delta NYC$,所以

四邊形 OYCN 與四邊形 OMAY 全等。

同理可推得

四邊形 OYCN, OMAY, OXIM, OCHX 全等。

6. 證明四邊形 OYCN 與四邊形 APTS 全等。

因為
$$\overline{OC} = \overline{OY} = \overline{AS} = \overline{AP}, \angle COY = 90^{\circ} = \angle SAP$$
,所以

$$\Delta YON \cong \Delta PAS$$
 (SAS 全等),可推得 $\overline{YN} = \overline{PS}$ 。

因為 \overline{OS} // \overline{CB} , \overline{MN} // \overline{AB} ,可得到 $\angle ONC = \angle MOS = \angle AST$ (同位角),所以

$$\angle YNC = \angle ONC - \angle ONY = \angle AST - \angle ASP = \angle PST$$
, \mathbb{Z}

$$\overline{YN} = \overline{PS}, \angle YCN = 90^{\circ} = \angle PTS$$
, 所以

 $\Delta YCN \cong \Delta PTS$ (AAS 全等)

因為 $\Delta YOM \cong \Delta PAS, \Delta YCN \cong \Delta PTS$,所以

四邊形 OYCN 與四邊形 APTS 全等。

7. 證明正方形UTWV 與正方形BCFG全等

因為 $\Delta YCN \cong \Delta PTS$,得到 $\overline{NC} = \overline{ST}$,又因為 $\overline{NC} + \overline{CB} = \overline{BN} = \overline{AM} = \overline{YC} = \overline{PT} = \overline{SW} = \overline{NC}$

 $\overline{ST}+\overline{TW}$,可推得 $\overline{CB}=\overline{TW}$,又因為四邊形UTWV 與四邊形BCFG 均為正方形,所以

正方形UTWV 與正方形BCFG全等

8. 討論正方形 ACHI 中的四片全等四邊形,以及正方形 BCFG 與正方形 ABDE 的關係:

因為四邊形 SWRB, PTSA, QUPE, RVQD 全等,且四邊形 OYCN, OMAY, OXIM, OCHX 全等,又四邊形 OYCN 與四邊形 APTS 全等,以及正方形 UTWV 與正方形 BCFG 全等,所以

正方形ABDE面積 = $4 \times$ 四邊形APTS面積 + 正方形UTWV面積 = $4 \times$ 四邊形OYCN面積 + 正方形BCFG面積 = 正方形ACHI面積 + 正方形BCFG面積

9. 最後利用面積關係推出勾股氏定理的關係式:

正方形ABDE面積=正方形ACHI面積+正方形BCFG面積

因此

$$\overline{AB}^2 = \overline{BC}^2 + \overline{AC}^2$$

$$c^2 = a^2 + b^2.$$

【註與心得】

1.來源:此證明出自以下書籍及期刊

Versluys, J. (1914). Zes en negentig bewijzen voor het Theorema van Pythagoras (Ninety-Six Proofs of the Pythagorean Theorem) (p. 37). Amsterdam: A. Versluys.

2.心得:此題作圖透過建立與直角三角形三邊平行的平行線,將正方形分割出若干區塊, 再一一證明這些區塊全等,最後再藉由面積拼合的概念,推導出勾股定理。此 題證明因為牽涉到四邊形的全等證明,需要再分割成兩個三角形,所以整個證 明過程冗長且複雜,對於國中生而言可說是相當有難度的一個證明方式。

3.評量

國中	高中	教學	欣賞	美學
•			•	•

4.補充:此證明為拼圖證明,其拼法可參考下圖:

