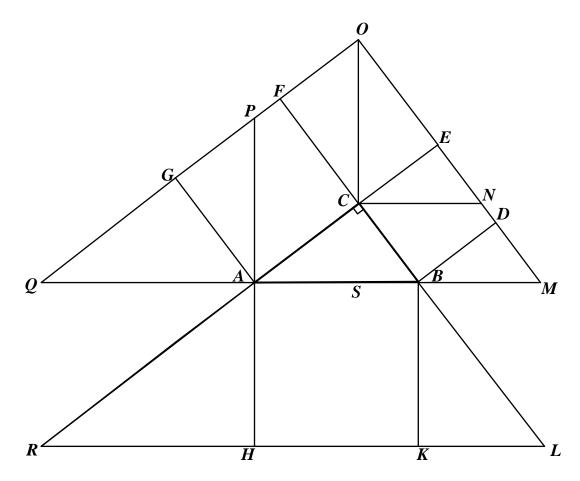
勾股定理證明-G064

【作輔助圖】

- 1. 分別以直角三角形 ABC 的 \overline{AC} , \overline{BC} 和 \overline{AB} 為邊長,向外作正方形 ACFG ,正方形 BCED 和正方形 ABKH 。
- 2. 延長 \overline{DE} 和 \overline{GF} ,使得直線DE和直線GF相交於O點。
- 3. 延長 \overline{FG} 和 \overline{ED} ,使其分別與直線AB交於Q點,M點。
- 4. 延長 \overline{CA} 和 \overline{CB} ,使其分別與直線HK交於R點,L點。
- 5. 延長 \overline{HA} ,交 \overline{GF} 於P點。
- 6. 過C點作 \overline{AB} 的平行線,交 \overline{DE} 於N點。
- 7. 連接*OC*。



【求證過程】

以直角三角形 ABC 的三邊分別向外作三個正方形,利用輔助線將圖形延伸,並利用切割與推移等過程,重新找出面積的關係,最後推出勾股定理的關係式。

1. 先證明三角形 APG 與三角形 ABC 全等,推得 $\overline{GP} = \overline{FO}$:

因為
$$\angle GAP = 90^{\circ} - \angle PAC = \angle CAB$$
,且 $\overline{AG} = \overline{AC}$, $\angle AGP = \angle ACB = 90^{\circ}$,所以
$$\Delta APG \cong \Delta ABC \text{ (ASA } 全等).$$

得到

$$\overline{GP} = \overline{CB} = \overline{CE} = \overline{FO}$$
.

2. 先證明三角形 APG 與三角形 COF 全等,推得 \overline{OC} // \overline{PA} :

因為
$$\overline{GP} = \overline{FO}$$
,又 $\overline{GA} = \overline{FC}$ 且 $\angle AGP = \angle CFO = 90^{\circ}$,所以

$$\triangle APG \cong \triangle COF$$
 (SAS 全等).

得到 $\angle GPA = \angle FOC$,因此

OC // PA (同位角相等).

3. 先說明四邊形 ACOP, CBMN 皆為平行四邊形,進一步得到平行四邊形 ACOP 面積等於正方形 ACFG 面積,平行四邊形 CBMN 面積等於正方形 BCED 面積:

由平行關係可知 \overline{PO} // \overline{AC} ,又因為 \overline{OC} // \overline{PA} ,所以四邊形ACOP為平行四邊形。且

平行四邊形
$$ACOP$$
面積= $\overline{AC} \times \overline{CF}$ =正方形 $ACFG$ 面積.

同理可證四邊形 CBMN 為平行四邊形,且

平行四邊形
$$CBMN$$
 面積= $\overline{CB} \times \overline{BD}$ = 正方形 $BCED$ 面積.

4. 證明三角形 QPA 與三角形 RAH 全等:

因為 $\triangle APG \cong \triangle ABC$,所以 $\overline{AP} = \overline{AB} = \overline{HA}$,且由作圖的平行關係可知 $\angle QPA = \angle RAH$, $\angle QAP = \angle RHA = 90^\circ$,因此

 $\Delta QPA \cong \Delta RAH$ (ASA 全等).

5. 證明三角形 OCN 與三角形 BKL 全等:

因為 $\triangle COF \cong \triangle APG \cong \triangle ABC$,所以 $\overline{OC} = \overline{AB} = \overline{BK}$,且由作圖的平行關係可知

$$\angle ONC = \angle NMB = \angle BLK$$
, $\angle OCN = \angle BKL = 90^{\circ}$,所以 $\triangle OCN \cong \triangle BKL$ (AAS 全等).

6. 證明三角形 QOM 與三角形 RCL 全等:

因為 $\Delta QPA \cong \Delta RAH$, $\Delta OCN \cong \Delta BKL$, 所以 $\overline{QA} = \overline{RH}$, $\overline{CN} = \overline{KL}$, 因此

$$\overline{QM} = \overline{QA} + \overline{AB} = \overline{RH} + \overline{HK} = \overline{RL}$$
.

又因為 $\angle PQA = \angle ARH$, $\angle QOM = \angle RCL = 90^{\circ}$, 故 $\Delta QOM \cong \Delta RCL(AAS$ 全等).

7. 最後利用面積關係推出勾股定理的關係式:

正方形ABKH 面積 = ΔRCL 面積 - (ΔRAH 面積 + ΔBKL 面積 + ΔACB 面積)

- $=\Delta QOM$ 面積 $-(\Delta QPA$ 面積 $+\Delta OCN$ 面積 $+\Delta ACB$ 面積)
- =平行四邊形CBMN面積+平行四邊形ACOP面積
- =正方形BCED面積+正方形ACFG面積.

得到

$$\overline{AB}^2 = \overline{BC}^2 + \overline{AC}^2$$
,

即

$$c^2 = a^2 + b^2.$$

【註與心得】

- 1. 來源:這個證明記載於:
 - J. Wipper (1880). 46 Beweise des pythagoraischen Lehrsatzes, nebst kurzen biogr. Mittheilgn uber Pythagoras (p. 30). Leipz.: Friese.
 - E. Fourrey (1907). Curiosités Géométriques(p. 82). Paris: Vuibert et Nony.
- 2. 心得:此題證明的關鍵在於證明四邊形 ACOP, CBMN 皆為平行四邊形,以及三角形 QOM 與三角形 RCL 全等,再利用全等圖形的面積增補關係,推得正方形 ABKH 面積等於平行四邊形 ACOP 與平行四邊形 CBMN 的面積和,進一步得到勾股定理的關係式。
- 3. 評量:

國中	高中	教學	欣賞	美學
•		•		