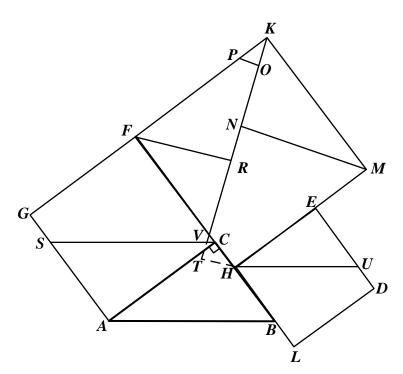
勾股定理證明-G191

【作輔助圖】

- 1. 以 \overline{AC} 為邊長向外作正方形 ACFG.
- 2. \overline{CB} 上取一點H點使得 $\overline{FH} = \overline{AB}$,作正方形 \overline{FHMK} .
- 3. 延長 \overline{HB} 至L點使得 $\overline{HL} = \overline{CB}$,作正方形HLDE.
- 4. 過C點作平行 \overline{AB} 的直線,交 \overline{GA} 於S點。
- 5. 過H點作平行 \overline{AB} 的直線,交 \overline{ED} 於U點。
- 6. \overline{FC} 上取一點V 使得 $\overline{FV} = \overline{HU}$, $\overline{\Psi}$.
- 7. 過F點作垂直 \overline{KV} 的直線,交 \overline{KV} 於R點。
- 8. 過M 點作垂直 \overline{KV} 的直線,交 \overline{KV} 於N點。
- 9. 在直線 KV 的直線取一點 T , 使得 $\angle VHT = \angle CAB$.
- 10. \overline{FK} 上取一點P使得 $\overline{PK} = \overline{VH}$,過P點作垂直 \overline{KV} 的直線,交 \overline{KV} 於O點。



【求證過程】

證明正方形 FHMK 面積等於正方形 HLDE 的面積加上正方形 ACFG 的面積,最後推出勾股定理的關係式。

1. 證明三角形 FVR 與三角形 HUE 全等:

設
$$\angle CAB = x^{\circ}$$
, $\angle CBA = y^{\circ}$,且已知 $x^{\circ} + y^{\circ} = 90^{\circ}$ 。因為 $\angle VHT = \angle CAB = x^{\circ}$,所以
 $\angle HVT = y^{\circ}$ 。因為 $\angle FVR = \angle HVT = y^{\circ}$, $\angle HUE = \angle CBA = y^{\circ}$,所以

$$\angle FVR = \angle HUE$$
.

又
$$\angle FRV = 90^{\circ} = \angle HEU$$
, $\overline{FV} = \overline{HU}$, 故

 $\Delta FVR \cong \Delta HUE (AAS).$

2. 證明三角形 KPO 與三角形 HVT 全等:

因為
$$\angle PKO = 90^{\circ} - \angle FVR = 90^{\circ} - y^{\circ} = x^{\circ} = \angle THV$$
,

$$\angle OPK = 90^{\circ} - \angle PKO = 90^{\circ} - x^{\circ} = y^{\circ} = \angle TVH, \ \overline{PK} = \overline{VH}, \ \text{fill}$$

 $\Delta KPO \cong \Delta HVT$ (ASA 全等).

3. 證明三角形 MKN 與三角形 CSA 全等:

因為
$$\angle NKM = 90^{\circ} - \angle PKO = 90^{\circ} - x^{\circ} = y^{\circ} = \angle CBA$$
, $\angle MNK = 90^{\circ} = \angle ACB$,

$$\overline{MK} = c = \overline{AB}$$
 , 所以

 $\Delta MKN \cong \Delta ABC$ (AAS 全等).

因為
$$\overline{SC}$$
 / \overline{AB} ,所以 $\angle ACS = \angle CAB$,又 $\angle CAS = 90^{\circ} = \angle ACB$, $\overline{CA} = \overline{AC}$,可推得
$$\Delta CSA \cong \Delta ABC \text{ (ASA } \text{ 全等)}.$$

故

$$\Delta MKN \cong \Delta CSA$$
.

4. 證明四邊形 HTNM 與四邊形 SGFC 全等:

因為 $\Delta KPO \cong \Delta HVT$,所以 $\angle HTV = \angle KOP = 90^{\circ}$ 。因為 $\angle HTV = 90^{\circ} = \angle SGF$,

$$\angle MNT = 90^\circ = \angle CFG$$
, $\angle MHT = 90^\circ + x^\circ = 90^\circ + (90^\circ - y^\circ) = 180^\circ - y^\circ = \angle CSG$,所以
四邊形*HTNM* 與四邊形*SGFC*的四個內角都對應相等。

因為 $\Delta MKN \cong \Delta ABC$,所以 $\overline{MN} = \overline{AC} = b = \overline{CF}$ 。因為 $\Delta CSA \cong \Delta ABC$,所以 $\overline{CS} = \overline{AB} = c$,可推得 $\overline{MH} = c = \overline{CS}$ 。故

四邊形HTNM與四邊形SGFC全等。

5. 證明四邊形 PORF 與四邊形 UDLH 全等:

因為
$$\angle FPR = 180^{\circ} - \angle OPK = 180^{\circ} - y^{\circ} = 180^{\circ} - \angle HUE = \angle HUD$$
,

$$\angle POR = 90^{\circ} = \angle UDL$$
, $\angle ORF = 90^{\circ} = \angle DLH$,所以

四邊形PORF與四邊形UDLH的四個內角都對應相等。

因為 $\Delta FVR \cong \Delta HUE$,所以 $\overline{FR} = \overline{HE} = a = \overline{HL}$,又

$$\overline{FP} = \overline{FK} - \overline{PK} = \overline{FH} - \overline{VH} = \overline{FV} = \overline{HU}$$
, $\dot{\boxtimes}$

四邊形PORF與四邊形UDLH全等。

6. 最後利用面積關係推出勾股定理的關係式:

正方形FHMK面積 = ΔFVR 面積 + ΔKPO 面積 + 四邊形HVNM面積

- $+\Delta MKN$ 面積 + 四邊形PORF 面積
- $= \Delta HUE$ 面積 $+ \Delta HVT$ 面積 + 四邊形HVNM 面積
 - $+\Delta CSA$ 面積 + 四邊形 UDLH 面積
- $=\Delta HUE$ 面積+四邊形HTNM面積
 - $+\Delta CSA$ 面積 + 四邊形 UDLH 面積
- $=\Delta HUE$ 面積 + 四邊形SGFC面積
 - $+\Delta CSA$ 面積 + 四邊形 UDLH 面積
- $=(\Delta HUE$ 面積 + 四邊形 UDLH 面積)
 - $+(\Delta CSA$ 面積 + 四邊形SGFC面積)
- =正方形HLDE面積+正方形ACFG面積,

即

$$c^2 = a^2 + b^2$$
.

【註與心得】

- 1. 來源:根據魯米斯(E.S. Loomis) 在他的著作《勾股定理》中說:這個證明是他在1926 年 3 月 18 日想到的。
- 2. 心得:此證明使用的是切割法,必須證明正方形 FHMK 所切割成的所有區塊的面

積,恰好等於正方形*HLDE*的面積加上正方形*ACFG*的面積,最後就能推導出勾股定理的關係式。

3. 評量:

國中	高中	教學	欣賞	美學
	•	•	•	•

4. 補充:

- (1) 此證明在魯米斯的書中所提的作圖是錯誤的,書上是連線段 \overline{CK} ,而不是連線段 \overline{VK} ,事實上是錯誤的,必須在 \overline{FC} 上取一點V使得 $\overline{FV}=\overline{HU}$,接下來連 \overline{VK} 才是正確的分割。
- (2) 此證明為拼圖證明,其拼法可參考下圖:

